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Abstract—Point cloud classification plays a critical role in point
cloud processing and analysis. Accurately classifying objects on
the ground in urban environments from airborne laser scanning
(ALS) point clouds is a challenge because of their large variety,
complex geometries, and visual appearances. In this paper, a novel
framework is presented for effectively extracting the shape features
of objects from an ALS point cloud, and then, it is used to classify
large and small objects in a point cloud. In the framework, the
point cloud is split into hierarchical clusters of different sizes
based on a natural exponential function threshold. Then, to take
advantage of hierarchical point cluster correlations, latent Dirich-
let allocation and sparse coding are jointly performed to extract
and encode the shape features of the multilevel point clusters.
The features at different levels are used to capture information
on the shapes of objects of different sizes. This way, robust and
discriminative shape features of the objects can be identified, and
thus, the precision of the classification is significantly improved,
particularly for small objects.

Index Terms—Latent Dirichlet allocation (LDA), point cloud
classification, point-cluster-based features, sparse coding.

I. INTRODUCTION

THE airborne laser scanning (ALS) technique provides ac-
curate 3-D coordinates of large landscapes and multiecho

pulses and intensities with high horizontal and perpendicular
accuracy [1]. For applications such as 3-D urban modeling and
city planning, efficient representation and recognition of urban
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Fig. 1. Process of classifying ALS point clouds.

scenes from ALS point clouds are highly desirable. However,
accurately classifying objects in complex landscapes is a diffi-
cult task [2] due to their large variety, complex geometries, and
visual appearances. Extracting the discriminative features of
objects from noisy and cluttered scenes is a key step in produc-
ing excellent classification results. ALS devices are usually far
from the objects, and therefore, the number of points sampled
is different for different objects, i.e., the larger the size of the
object facing the device is, the more points are sampled, and
vice versa. Traditionally, range scan processing algorithms have
focused either on small objects in isolation or on large objects
in scenes. Simultaneously extracting the useful shape features
of large and small objects from ALS point clouds remains a
challenge.

Our main goal is to present a novel framework for effectively
extracting the shape features of objects from ALS point clouds
that is based on hierarchical point clusters. The framework is
then used to classify small and large objects in point clouds. As
illustrated in Fig. 1, the proposed method first aggregates the
input ALS point cloud into multilevel point-cluster sets based
on natural exponential function thresholds (NEHCs). Then,
joint latent Dirichlet allocation and sparse coding (SCLDA)
is performed to construct the shape features of the objects
using the point-based features. Finally, the AdaBoost classifier
is used to classify on-ground objects from complex ALS point
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clouds. Our method is then tested on ALS point clouds acquired
from different urban scenes. The classification precision of our
method is better than that of other methods, particularly in
terms of classifying small objects, such as cars, and our method
has a significant advantage over other methods.

The main contributions of this paper are as follows.
1) A natural exponential function threshold-based approach

is proposed to construct hierarchical point clusters, i.e.,
NEHCs. The input point cloud is split into hierarchical
point clusters with different sizes based on the natural
exponential function threshold. The point cloud is split
into hierarchical point clusters based on the sizes of the
on-ground objects and the characteristics of the data.
Therefore, the features extracted from the NEHCs are
more robust than the point-based features, and they can
be adapted to point clouds with various point densities,
which is particularly important for small on-ground ob-
jects such as cars.

2) SCLDA, which integrates the advantages of latent
Dirichlet allocation (LDA) and sparse coding, is used to
extract the shape features of NEHCs. LDA can extract
discriminative and robust features that have the same
size from point clusters containing different numbers of
points, whereas sparse coding can identify correlations
between different features, eliminate redundant features,
and retain discriminative features. By virtue of SCLDA
inheritance, discriminative information for multiple lev-
els can be leveraged to further improve the separability of
low-level points.

II. RELATED WORK

A. Feature Representation

As noted in [3], the generation of good features is very
important for obtaining high-precision classification results.
The features are generally divided into point-based [4], [5],
voxel-based [6]–[9], and object-based [10] levels.

In the study of point-based feature classification,
Niemeyer et al. [4] first derived features from full-waveform
LiDAR point cloud data and then used a conditional random
field (CRF) to integrate the point-based features with contextual
information for pointwise classification. In [5], the point cluster
features were developed using a multiscale and hierarchical
point cloud partition framework.

Unlike point-level classification features, scene analysis may
be also based on voxels or 3-D segments. Lim and Suter [6]
combined generic scale selection and voxelization to iteratively
oversegment a point cloud into supervoxels and then computed
the local and regional features of the supervoxels. They later [7]
showed that, although supervoxels can reduce the total amount
of data involved in the computation, oversegmentation signif-
icantly increases the computational cost. Aijazi et al. [8] pre-
sented a voxel-based segmentation technique using a link-chain
method and then classified the segmented objects by employing
geometrical and local feature descriptors. On using voxels
in reconstructing building models, Truong-Hong et al. [9]
extracted facade features based on the underlying vertical and
horizontal grid voxels of the feature boundaries using a grid
clustering technique. The geometric buildings were modeled
using the flying voxel method.

In [10], point-based and object-based features were derived
from line and plane segments obtained using the random sample
consensus and the minimum description length. Two random
forest classifiers were combined with the two types of features
and used to classify urban point clouds. In [11], features were
extracted from three different entities—points, plane segments,
and line segments—in a multiple-entity-based classification
system. This method achieved a better overall accuracy than the
point-based methods did. The methods reported in [3] and [12]
involved labeling objects at the object level by extracting their
shape features. The advantages and the limitations of an object-
based approach in remote sensing image classification were
evaluated in [13].

B. Classifiers

In addition to defining discriminative feature descriptors,
it is essential to design proper classifiers to recognize the
objects in a cluttered scene. Many supervised statistical
classifiers have been developed for classifying LiDAR point
clouds. For example, for urban mapping, Mallet [14] used
a point-based multiclass support vector machine (SVM) to
classify full-waveform LiDAR point clouds. A supervised
classification method using locally extracted features from
a LiDAR point cloud was presented to identify on-ground
objects [2]. However, both approaches classified each point
independently without considering the labels of neighboring
points. Contextual information [15] from neighbors was used to
improve the final classification. Each 3-D point in an irregularly
distributed point cloud was assigned to a semantic object class.
This can be regarded as a tradeoff between objects and pixel ori-
entations. Based on an SVM and evolutionary majority voting,
García-Gutiérrez et al. [16] developed a contextual classifier,
which is called SVM-EMV, to model land use and land
cover maps from high-resolution LiDAR data using imagery
data fusion. By integrating a random forest classifier into a
CRF framework, Niemeyer [17] et al. developed a context-
based CRF classifier for urban LiDAR point clouds. Based
on the construction of a minimum spanning forest from
region markers, Tarabalka et al. [18] used spatial information
described by a Markov random field to update the classification
results produced by a probabilistic SVM. Negri et al. [19]
developed a contextual classification method that consisted
of locally adapting the classification hyperplane. They used
contextual information to displace the separation hyperplane
obtained by the traditional SVM. In [3], neighboring nearby
points were clustered hierarchically to form a set of potential
object locations, a graph-cut algorithm was used to segment
the points surrounding those locations into foreground and
background sets, and a shape and a contextual feature were
constructed for each point cluster. Finally, an SVM classifier
was used to classify the objects into semantic groups.

C. Hierarchical Classification

In hierarchical data structures, local neighborhoodshave been
determined with respect to either their absolute sizes [20] or their
scale parameters [21]. In addition to optimal neighborhoods, fea-
tures on multiple scales may be considered. A multiscale hi-
erarchical framework was used to describe the classification of
terrestrial laser scanning (TLS) point clouds of cluttered urban
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Fig. 2. Hierarchical point-cluster sets of a car generated using method [5] and our method. (a) Point cloud of a scene containing a car, which is shown in red.
(b)–(d) Multilevel point clusters generated using method [5] in order from fine to coarse. (e)–(g) Multilevel point clusters generated using our method in order
from fine to coarse. The different colors represent different point clusters in (b)–(g).

scenes [5]. In this framework, point clouds were first resampled
onto different scales. Then, the resampled data set for each scale
was aggregated into several hierarchical point clusters. Another
method that has been used in image classification is the super-
pixel approach [22], [23], which aggregates local neighboring
points that have similar colors and texture statistics.

Brodu and Lague [24] classified TLS point clouds using a
multiscale local dimensionality feature. Because it combined
various scales, the method performed better than a single scale
analysis and was robust to missing TLS data. In [25], the au-
thors presented a classification framework that allowed discrete
surface analysis at multiple scales. Xiong et al. [26] used point
cloud statistics and relational information on fine and coarse
scales. Xu et al. [27] employed three types of entity, namely,
single points, plane segments, and segments obtained by mean-
shift segmentation, to classify point clouds. In these two meth-
ods, different scales were used to determine the context of the
point cloud and the shapes of the objects. In [28], a rule-based
hierarchical semantic classification scheme that used spectral
information, geometry, and topological features was developed.
Because multilevel structures are capable of representing the se-
mantic intercorrelations or visual similarities among categories
[29], hierarchical dictionary learning models have been used to
enhance classification performance [30]–[33]. To avoid losing
all information about the spatial layout of a set of features,
Zhou et al. [34] incorporated a multiresolution representation
into a bag-of-features model. They partitioned an image into
several images with multiple resolutions and extracted local
features from each of the multiresolution images. Then, the
representations of the channels at different resolutions were
combined, and an SVM was used to reach a final decision.

III. CONSTRUCTION OF NEHCS

Discriminative features adapted to objectpoints with different
spatial extents are necessary for recognizing objects in ALS point
clouds. In [5], the point number of each point cluster at each
level changes in an approximately linear manner. Small objects
in an ALS point cloud, such as cars, cannot be segmented
adequately because they contain few points. For example,
Fig. 2(b)–(d) shows that the method described in [5] generates
three levels of point clusters for a car, which are illustrated by
the red points in Fig. 2(a). We observe that there is only one

point cluster at each of the three levels of the car. It is difficult
to identify stable and distinct features at different levels.

To solve this problem, we propose a method for generating
hierarchical point clusters, i.e., NEHCs, that is based on a
natural exponential function and that segments the input point
cloud into better hierarchical point-cluster sets. The process for
generating the NEHCs includes the following steps.

1) The terrain points and the isolated points are first removed
using the method described in [35]. Removing the terrain
points helps with the determination of the connectivity of
the on-ground objects.

2) Each of the remaining points is connected to its nearest
k neighbors to form an undirected graph G(V,E), where
V is the set of points, and E is the set of edges.

3) Because on-ground objects are often close together in
cluttered urban scenes, a connected component can con-
tain more than one object. To further break a connected
component into smaller pieces so that single objects
can be isolated, a moving window algorithm is applied
to identify the local maxima in a 2-D raster image.
The image represents the heights of the points in the
connected component. The raster value is the maximum
height of the points in each raster. When the local maxima
are found, a graph cut [36] is employed to segment the
connected components, and the local maxima are used as
seeds. After the graph cut is performed, each connected
component is divided into several point clusters.

4) A normalized cut [37] is used to partition a large point
cluster into two new clusters when the number of points
in the cluster is greater than a predefined threshold δm.
To ensure that each point cluster contains enough spatial
or shape information, we define δm at different levels and
set δm = ηex, where η is a parameter, and x is an integer
related with the level number. Thus, the input point cloud
is segmented into multilevel point-cluster sets.

The smallest point clusters (i.e., those with x = 2) are at the
lowest level, namely, the nth level. In the jth (j < n) level,
x = n+ 2− j. Fig. 3 shows an example of a three-level point
cluster hierarchy. Similarly, Fig. 2(e)–(g) shows the car point-
cluster sets for the three levels generated using our method.
In Fig. 2(e), the points of the car in Fig. 2(a) are segmented
into three point clusters. They are segmented into two point
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Fig. 3. Illustration of three-level point clusters.

clusters in Fig. 2(f) and into one point cluster in Fig. 2(g). The
same-level point clusters shown in Fig. 2(e) and (f) describe
the local features of the car. The point cluster in the third
level [see Fig. 2(g)] represents the global appearance of the car.
Therefore, this approach to partitioning the point cloud can help
with the extraction of discriminative features of objects with
different sizes from scanned scenes.

IV. EXTRACTION OF POINT-CLUSTER-BASED FEATURES

Point-based features do not consider the spatial relationships
among neighboring points; therefore, they are sensitive to noise
and clutter in point clouds. The features of the NEHCs take
the spatial relationships among the points and the shape of the
point cluster at each level into account. To construct the features
of NEHCs, the point-based features are first extracted and then
used to construct an SCLDA model. Finally, the features of each
NEHC are obtained using the SCLDA model.

Because the point clouds have been split into multiple levels,
their point-based features are extracted at each level. The set
of the k-nearest neighborhoods of a given point p is defined
as the support region of p [5]. Here, k = 30, 60, and 90.
For each value of k, an 18-dimensional descriptor is obtained
from the eigenvalues and the spin image of p, which is based
on the support region. Therefore, the resulting 54-dimensional
descriptor is considered the feature of p. Next, we focus on the
process of deriving the feature of an NEHC.

To efficiently handle the key points that are salient image
patches, a bag-of-words (BoW) method [38], [39] is often used
to quantize each extracted key point into a visual word and then
to represent each image using a histogram of the visual words.
Inspired by the ideas behind BoW methods for classifying
objects, SCLDA is introduced to derive the features of NEHCs.
We know that a set of point clusters generated using the afore-
mentioned method is hierarchical and that the number of points
in each point cluster is different. To better express the features
of NEHCs using the SCLDA model, we introduce sparse coding
to describe the point-cluster-based features. Sparse coding has
an obvious advantage in vocabulary extraction and feature
representation [40]–[42]; its basic assumption is that the input
data can be represented using linear combinations of items in
an overcomplete vocabulary. The vocabulary is trained using
the point-based features. First, we define each NEHC as a
document; all the NEHCs make up a set of documents. The
vocabulary generated using sparse coding is considered the
vocabulary of the LDA. The point-based feature of each point in
an NEHC is treated as a basic unit, and each feature is encoded
using sparse coding. The frequency of each word in an NEHC
is computed to generate a word frequency vector with length
N (where N is the number of words in the vocabulary). The
SCLDA model is trained using the point-based features. The

process of extracting topics with SCLDA-based hierarchical
features is illustrated in Fig. 4. It consists of the following steps.

1) Encode point-based features using sparse coding. A point-
based feature x can be encoded into an N -dimensional
vector u = [u1, u2, . . . , uN ] by fitting an optimized
model with the sparsity constraint

min
V,U

(
‖X−VU‖22 + λ|U|

)
subject to ‖wk‖ ≤ 1, ∀k = 1, 2, . . . , N (1)

where a unit L2-norm constraint on wk is typically ap-
plied to extract the discriminative feature, N is the num-
ber of words, V = [w1,w2, . . . ,wN ]T is the vocabulary,
X = [x1,x2, . . . ,xq]

T is the set of point-based features,
and U = [u1,u2, . . . ,uq] is the sparse representation
of X. The second term in (1) is the L1 penalty term,
which enforces the sparsity of the vector U, and λ is the
parameter that controls the sparsity.

2) Extract the vocabulary. In the training phase, (1) is opti-
mized by solving for U and V. The vocabulary V can be
determined by solving for U and V iteratively. Therefore,
the feature sign method [43] is used to solve for U when
V is fixed. The Lagrange dual method [43] is used to
solve for V when U is fixed. This way, V is determined
iteratively.

3) Create the sparse representation. After V has been de-
termined, sparse representations are made throughout the
vocabulary. The point-based features are encoded using
the feature sign method [43].

4) Extract the SCLDA-based feature of the NEHC. A vocab-
ulary w = [w1,w2, . . . ,wN ] that is the same as V in (1)
is set up. The probability of the ith word in the document
can be calculated using

p(wi|θ,β) =
r∑

k=1

uk
i (2)

where uk
i is computed using (1), r is the number of

points in the NEHC, β is a K ×N matrix, and θ is a
K-dimensional Dirichlet random variable [44], i.e.,θ=[θ1,
θ2, . . . , θK ], where θi represents the probability of the ith
topic, and K is the number of topics. A latent topic set z=
[z1, z2, . . . , zn] is created, and α is defined as a Dirichlet
parameter. We build the LDA model [44] as follows:

p(w|α, β) = Γ(
∑

i αi)∏
i (Γ(αi))

∫ (

k∏
i=1

θαi−1
i )·

(

N∏
n=1

∑
zn

p (zn|θ)·

p (wn|zn, β)
)dθ

(3)

In the training phase, α and β are calculated using the
expectation-maximization algorithm because w is considered
a variable. θ and z are hidden variables. Finally, the probability
of each latent topic in the point cluster is derived. The SCLDA-
based feature of the NEHC is defined as FSL

Cj
i

, and then

FSL
Cj

i
= [θ1, θ2, . . . , θK ]. (4)

Equation (4) represents the SCLDA-based feature of
NEHC Cj

i .
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Fig. 4. Process of extracting the SCLDA-based feature of an NEHC.

V. POINT CLOUD CLASSIFICATION

We use the AdaBoost classifier to classify the point-cluster
sets into different categories based on the SCLDA-based fea-
tures of the NEHCs. The training data are clustered into hi-
erarchical point clusters, and the SCLDA-based features are
extracted from the data. Once all the features of the hierarchical
point clusters have been derived using the SCLDA-based
model, the one-versus-all AdaBoost classifiers are trained. For
n point clusters, there are 3n AdaBoost classifiers. The SCLDA
model and the AdaBoost classifiers are obtained during the
training process. They are then used to classify the unlabeled
point clouds. The unknown point-cluster sets are labeled ac-
cording to their hereditability from coarse to fine levels. Fol-
lowing [23], the probability of assigning a label li to a specific
cluster is mathematically expressed as

Pnum

(
li,F

SL
)
=

exp
(
Hnum(li,F

SL)
)

∑
i exp (Hnum(li,FSL))

(5)

where FSL is the SCLDA-based feature of each point cluster,
num is an integer (1 ≤ num ≤ n), and Hnum(li,F

SL) is the
output of the AdaBoost classifier for li.

The point-cluster sets are labeled according to their inheri-
tance from coarse to fine levels. During the training process,
the training data are manually labeled, and each cluster only
contains one specific object category. During the generalization
process, the finest point cluster only includes one object or
one part of an object, and the point clusters in each of other
levels may contain more than one object. Therefore, we only
label point-cluster sets at the fine level. A point cluster and the
point clusters in its coarse level contain different SCLDA-based
features; therefore, unknown point-cluster sets are labeled using
the joint probabilities assigned to multiple point-cluster sets.
The point clusters at each level inherit the recognition result
of the previous level. As shown in Fig. 5, the probability of
labeling a cluster Ci in a point-cluster set on the ith level
with label li is P i, and the probability of labeling a cluster
Ci+1 in a point-cluster set on the (i+ 1)th with label li level
is P i+1. Eventually, the classification result of cluster Ci+1

Fig. 5. Labeling unknown point clusters using inheritance.

is P i × P i + 1, which is the inherited probability of Ci. In
the same way, the probability P i × P i+1 × P i+2 of the fine
point cluster Ci+2 in each category can be obtained. The final
probability of labeling one cluster in a point-cluster set with
label li can be mathematically expressed as

P j
n(li) =

n∏
m=1

Pm,num(li,FSL) (6)

where n denotes the number of levels, P j
n denotes the proba-

bility that the jth point cluster is attributed to category li, and
Pm,num
n denotes the probability that the mth point-cluster sets

on the numth level are attributed to category li. Finally, all the
point clusters on the finest level are labeled with the label with
the highest probability.

VI. EXPERIMENTAL RESULTS

To evaluate the performance of our method, we perform both
qualitative and quantitative evaluations on the ALS point clouds
of three urban scenes.

A. Experimental Data Sets

We used three data sets from Tianjin, China, which were
acquired in August 2010 by a Leica ALS50 system with a
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TABLE I
EXPERIMENTAL DATA SETS

TABLE II
MAIN CHARACTERISTICS OF OUR METHOD AND THREE OTHER METHODS

mean flying height of 500 m above the ground and a 45◦ field
of view. The average strip overlap was 30%, and the point
density in the test areas was approximately 20–30 points/m2.
Large objects, such as buildings and trees, and small objects,
such as cars, were present in the three experimental areas. The
numbers of test and training points for each type of object after
terrain points were filtered and removed are listed in Table I. In
Scene I, buildings with different roof shapes, e.g., flat and gable
roofs, were surrounded by trees and cars. In Scene II, there
were buildings with different heights, dense complex trees, and
cars on the roads. In Scene III, cars were moving on the road
throughout the scan, and the road was surrounded by trees and
buildings.

We used Scene I and Scene II to compare the classification
results obtained by our method with those obtained by other
methods. The only cars in these two scenes were parked. Cars
moved along the road throughout the scan of Scene III. This
scene was used to further evaluate the quality of our extracted
features in the point cloud classification process, particularly
for classifying small objects.

As shown in Table I, the amounts of data in each category
were different in each of the three areas. We manually labeled
the point clouds of the three areas to enable the evaluation of
the classification results.

We implemented the proposed method in C++. The algo-
rithm ran on a computer with a 3.40-GHz Intel Core i7-4770 K
processor and 8 GB of random access memory. The system
took approximately 25.3 min to learn the SCLDA-based mod-
els and the AdaBoost classifiers. It took approximately 23.9,
10.9, and 7.3 min to classify the point clouds of Scene I,
Scene II, and Scene III, respectively. During processing, feature
extraction and sparse representation took approximately 67% of
the running time. However, most of the steps are parallelizable.
Therefore, they can be implemented using a parallel scheme to
reduce the amount of time required.

B. Comparison With Other Methods

To validate the performance of our method, we compared
it with three other methods. The first method (Method I)
used a combination of a BoW and LDA of point-cluster sets

to classify the unknown data. The vocabulary was extracted
using k-means, and each point-based feature was represented
using vector quantization. The second method (Method II) used
point-based features. It used point-based features to classify
point clouds directly without aggregating the data into point
clusters. Method II did not involve hierarchical structures. The
third method (Method III) was the one described in [2]. In this
method, each point was associated with a set of defined features
derived using geometric, multireturn, and intensity information;
and features were selected using JointBoost to evaluate their
correlations. On the other hand, our method does not utilize the
contextual information, such as intensity, to classify the point
clouds. Table II shows the main characteristics of our method
and the other three methods.

We selected some points from each scene to form the training
data set, which is illustrated in Fig. 6. The complete training
data set contained 242 071 points, including 115 380 tree points,
115 822 building points, and 10 869 car points. The numbers of
points in each category in Scene I, Scene II, and Scene III are
listed in Table I. Considering the diversity of the objects and
the completeness of the object points, we selected points on
buildings with different roofs, trees with different heights, and
parked and moving cars from Scene I, Scene II, and Scene III,
respectively.

Precision/recall can be used to represent the quality of the
classification [5]. Precision is the fraction of the retrieved in-
stances that are relevant, and recall is the fraction of the relevant
instances that are retrieved. High precision means that the
algorithm returned substantially more relevant results than irrel-
evant results, and high recall means that the algorithm returned
most of the relevant results. Table III shows the precision/recall
of the four methods in the learning stage. As shown in Table III,
the precision and recall of the classification results obtained
by our method are the highest for the classification of objects
in the three specific classes. The car classification precision
of our method is much higher than that of the other methods.
Therefore, SCLDA-based features describe the training data
and distinguish objects better than other features.

The quality of the classifications performed using the meth-
ods earlier has been also tested. Table IV shows the classifica-
tion results of the two scenes in terms of their precision/recall
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Fig. 6. Training data. Blue points represent trees, green points represent buildings, and red points represent cars. (a) Part of the training dataset obtained from
Scene I. (b) Part of the training dataset obtained from Scene II. (c) Part of the training dataset obtained from Scene III.

TABLE III
PRECISION/RECALL AND THE ACCURACY OF DIFFERENT METHODS IN THE LEARNING STAGE

and their accuracies. Except for a few points on the corners of
buildings and on cars that were difficult to distinguish, most of
the points were correctly recognized by our method. As shown
in Table IV, the precision and recall of our method with respect
to cars are higher than those of the other three methods. In
addition, the final classification accuracy of our method was
higher than that of the other three methods.

Figs. 7 and 8 visually show the classification results. Com-
pared with other classifiers, our method was more accurate;
it classified most of the points into the correct categories,
including the cars in dashed boxes in Fig. 7 and in dashed
box in Fig. 8. The classification result of Method II was the
worst, which means that using clusters as basic units helps
improve the classification results. Method I performed better at

classifying trees and buildings than at classifying cars; however,
it did not effectively recognize the trees, buildings, and cars in
the cluttered point clouds. Although Method III classified the
objects well, the results for cars need further improvement. In
our method, vocabulary training and representing features using
sparse coding result in accurate expressions of the characteris-
tics of the objects. Furthermore, sparse coding combined with
LDA to represent point-cluster features leads to high-precision
classification results.

C. Classification of Scene III

We classified the objects in Scene III using our method. The
result is shown in Fig. 9(b). Compared with Fig. 9(a), most of
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TABLE IV
PRECISION/RECALL AND ACCURACY OF THE CLASSIFICATION RESULTS

Fig. 7. Classification results obtained using the different methods for part of Scene I. (a) Ground truth. (b) Classification results obtained by our method.
(c) Classification results obtained by Method I. (d) Classification results obtained by Method II. (e) Classification results obtained by Method III. The points on
trees, buildings, and cars are colored blue, green, and red, respectively. Our method correctly classifies most of the points and outperforms the other three methods.

the points in Scene III are correctly recognized in Fig. 9(b),
particularly those points on moving cars. As shown in Table V,
our method’s classification results for Scene III were very
precise.

D. Sensitivity of the Parameters

Here, we analyze the impact of the parameters, including the
point-cluster generation threshold, the numbers of topics and
words, and the sparse coding parameters, on the classification
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Fig. 8. Classification results obtained using different methods for part of Scene II. (a) Ground truth. (b) Classification results obtained by our method.
(c) Classification results obtained by Method I. (d) Classification results obtained by Method II. (e) Classification results obtained by Method III. The points on
trees, buildings, and cars are colored blue, green, and red, respectively. Our method correctly classifies most of the points and outperforms the other three methods.

Fig. 9. Classification of Scene III, which includes a point cloud for moving
cars. (a) Ground truth. (b) Classification results obtained by our method. The
points on trees, buildings, and cars are colored blue, green, and red, respectively.

results. TheF1 measure expressed by the following is used to re-
present the quality of the classifications of Scene I and Scene II:

F1 =
2(recall × precision)

recall + precision
. (7)

1) Value of the Point-Cluster Set Generation Threshold:
We test the effect of different values of the point-cluster set
generation threshold δm, which is controlled by η in the formula
δm = ηex, on F1. Let η be equal to 8, 10, 12, and 14 when
there are 512 words and ten topics and when λ = 0.15. The
results are shown in Fig. 10. For Scene I and Scene II, our
method almost maintains the stability of the recognition of the
three categories, and it results in a better value of F1 for the
recognition of the three categories when η = 10.
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TABLE V
PRECISION/RECALL AND THE ACCURACY OF THE

CLASSIFICATION RESULTS FOR SCENE III

Fig. 10. Effect of different values of the point-cluster set generation threshold
δm on the classification results. (a) Effect of different values of η on the
classification results for Scene I. (b) Effect of different values of η on the
classification results for Scene II.

Fig. 11. Effect of different numbers of words and topics on the classification
results. (a) Effect of different numbers of topics on the classification results for
Scene I. (b) Effect of different numbers of words on the classification results
for Scene I. (c) Effect of different numbers of topics on the classification results
for Scene II. (d) Effect of different numbers of words on the classification
results for Scene II.

2) Numbers of Topics and Words: Fig. 11 shows the quality
of the classifications of Scene I and Scene II measured using
F1 for different numbers of topics and words. When η = 10,
the number of words is 512, and the sparsity is λ = 0.15, we
select 10, 12, 14, 16, 18, and 20 topics to show the effect of
different numbers of topics on the quality of the classification
[see Fig. 10(a) and (c)]. For the same values of η and λ, we
also select 128, 256, 512, and 1024 words and ten topics to
analyze the impact of the number of words on the quality of the
classification [see Fig. 10(b) and (d)].

Fig. 11(a)–(d) shows that the numbers of words and topics
have little effect on the quality of the classification of the three
categories in Scene I and Scene II. Most of the differences in
the values of F1 for the three categories are less than 9% (see
Table V), which means that our method performs well and stably
when there are few words and topics. The number of topics in-
fluences the recognition of trees and buildings less; for these two
categories, the standard deviations of F1 are 0.0036 and 0.0032,
respectively, for Scene I, and 0.0056 and 0.0025, respectively,
for Scene II. The number of words also slightly influences
the quality of the classification of trees and buildings because
the features on the surfaces of trees and buildings are simple

Fig. 12. Effect of different values of λ on the classification results. (a) Effects
of different values of λ on the classification results for Scene I. (b) Effect of
different values of λ on the classification results for Scene II.

and obvious. Selecting a few words and topics is sufficient to
describe these discriminative features. As shown in Fig. 11, the
values of F1 for buildings and trees are no less than 0.9. When
the numbers of topics and words increase, the value of F1 for
cars fluctuates. The value of F1 for the cars in Scene I is greatest
when the numbers of topics and words are 18 [see Fig. 11(a)]
and 512 [see Fig. 11(b)], respectively. For Scene II, the value of
F1 for the cars is highest when the number of topics is 10 [see
Fig. 11(c)] and the number of words is 512 [see Fig. 11(d)].
Buildings and trees have the highest values of F1 when the
number of topics is 10 [see Fig. 11(c)] and the number of words
is 512 [see Fig. 11(d)]. The values of F1 for buildings and trees
remain stable when the numbers of topics and words change.

Table VI lists the standard deviations of the values of F1 for
the three categories for different numbers of topics and words.
As shown in this table, the values of F1 for trees and buildings
are no more than 0.56%, which demonstrates the stability of
the classification results for buildings and trees. The value of
F1 for cars changes when the numbers of topics and words
change because there are fewer cars in the training sample to
extract the vocabulary. However, our method still provides good
classification results.

3) Sparse Coding Parameters: There is one parameter, i.e.,
λ, in (1). When there are 512 words and 10 topics and when
η = 10, we test different values of λ, i.e., λ = 0.1, 0.15, 0.2,
0.25, and 0.3. Fig. 12 shows the impacts of different values of λ
on the classification results. Using λ = 0.15 provides good
results for the two scenes.

E. Error Analysis

We analyze the classification results of Scene I and Scene II
when there are 512 words and 10 topics and when λ = 0.15
and η = 12. Tables VII and VIII list the confusion matrices of
the two scenes. The points on the prominent eaves are often
incorrectly classified as car or tree points [see dashed box in
Fig. 13(a)]. Due to the inhomogeneity of the input point cloud,
the points on some cars are distributed linearly, as shown in the
dashed box in Fig. 13(a); these are misclassified as tree points.
Some car points are scattered so that they are often recognized
incorrectly, as the points in the dashed box in Fig. 13(c) are.
Some tree points are misclassified as points on building roofs
because some local point clusters are nearly flat [see dashed
box 1 in Fig. 13(d)]; however, the generated point cluster for
a single tree crown [see dashed box 2 in Fig. 13(d)] may be
incorrectly classified as a car because its shape is similar to that
of a point cluster of a car.

VII. CONCLUSION

This paper has presented a method for extracting object shape
features for ALS point cloud classification. In this method, the
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TABLE VI
STANDARD DEVIATIONS OF F1 FOR DIFFERENT NUMBERS OF TOPICS AND WORDS

TABLE VII
CONFUSION MATRIX FOR THE RESULTS OF CLASSIFYING SCENE I

TABLE VIII
CONFUSION MATRIX FOR THE RESULTS OF CLASSIFYING SCENE II

Fig. 13. Typical misclassification errors. (a) Points on building edges are
misclassified as points on trees and cars. (b) Points on cars are misclassified
as points on trees. (c) Points on cars are misclassified as points on trees and
buildings. (d) Points on trees are misclassified as points on buildings and cars.

NEHCs divide the ALS point cloud into multiple levels, and in
each level, the data are aggregated into several point clusters
with different sizes. Splitting the point cloud guarantees that
each point cluster includes the points necessary for extracting
the shape features of small objects. SCLDA is exploited to

extract and encode multilevel discriminative features. Then,
each point cluster is labeled using the joint probability of
assigning a particular label over the multiple point-cluster sets.
The SCLDA is flexible enough to extend the classifiers to
multifeature channels, which further enhances the classification
accuracy. The experimental results show that our method takes
advantage of correlations between the multilevel point clusters
to effectively capture discriminative information via SCLDA
and is capable of performing complex point cloud classification
to obtain very precise results, particularly for small objects.

The hierarchy of a point cloud can be built using the semantic
correlations or visual similarities between categories. In the
future, we will incorporate hierarchical learning and multiple
features [45], [46] into this framework to further improve the
precision of the classification.
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