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Abstract—A 3-D tree structure plays an important role in many
scientific fields, including forestry and agriculture. For exam-
ple, terrestrial laser scanning (TLS) can efficiently capture high-
precision 3-D spatial arrangements and structure of trees as a
point cloud. In the past, several methods to reconstruct 3-D trees
from the TLS point cloud were proposed. However, in general,
they fail to process incomplete TLS data. To address such in-
complete TLS data sets, a new method that is based on a struc-
ture-aware global optimization approach (SAGO) is proposed.
The SAGO first obtains the approximate tree skeleton from a
distance minimum spanning tree (DMst) and then defines the
stretching directions of the branches on the tree skeleton. Based
on these stretching directions, the SAGO recovers missing data
in the incomplete TLS point cloud. The DMst is applied again
to obtain the refined tree skeleton from the optimized data, and
the tree skeleton is smoothed by employing a Laplacian function.
To reconstruct 3-D tree models, the radius of each branch section
is estimated, and leaves are added to form the crown geometry.
The developed methodology has been extensively evaluated by
employing a dozen TLS point clouds of various types of trees. Both
qualitative and quantitative performance evaluation results have
indicated that the SAGO is capable of effectively reconstructing
3-D tree models from grossly incomplete TLS point clouds with
significant amounts of missing data.

Index Terms—Missing data, optimization, terrestrial laser scan-
ning (TLS), tree skeleton, 3-D tree models.

I. INTRODUCTION

L IGHT detection and ranging techniques provide dense
and accurate 3-D coordinates, as well as multiecho

pulses and intensities with high horizontal and perpendicular
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accuracy [1]. In general terms, these techniques can be clas-
sified into airborne laser scanning (ALS) and terrestrial laser
scanning (TLS) techniques. Both ALS and TLS can capture a
canopy structure very effectively [2]–[5]. In practice, ALS is
preferred in obtaining a large-scale canopy structure. This tech-
nology has been employed in various ecological applications,
including change detection studies and forest inventories [6].
However, TLS-based techniques are suitable in reconstructing
stems and branching structure (e.g., [7] and [8]) or individual
trees [9]–[11]. Except for the diameter and tapering of the stem,
an accurate detection of single branches is important to assess
the branch dimensions [12]. Reconstruction of real trees from
TLS data allows automatic estimation of the stem volume of
forests, which has various uses. Detailed information regard-
ing tree structure is a key parameter for making ecological
assessments in forestry [13]. TLS-based 3-D tree modeling is
also employed in agriculture to estimate various parameters,
such as plant height, volume, leaf area index, and leaf area
density [14].

Although TLS provides raw 3-D views of the distribution
of canopy elements, there are still difficulties in accurately
modeling trees because of the large variety of trees and their
complex geometries [15]. The main reasons for these difficul-
ties are as follows: 1) The tree branches or branch parts are often
incompletely captured due to the limited scanning resolution or
occlusions by branches or other objects between the scanner
and the branch; 2) the point densities are typically not uniform
in the raw data; 3) the raw data are very noisy because of the
nonstationary interference created by the tree leaves; and 4) the
data acquisition process for large-scale multistation scanning
is very time-consuming, and the alignment of these data can
accumulate additional noise. Although using a single scan
avoids such problems, the disadvantage of such an approach
is that a tree can be scanned from only one viewpoint. Thus,
in such a case, some of the 3-D data of the stem and branches
will be missing due to occlusions. Despite these difficulties and
because of its importance in recent years, 3-D tree modeling
from a TLS point cloud has gained considerable scientific
attention (e.g., [16]–[30]). Previous 3-D tree-modeling methods
can be classified roughly into crown-based and skeleton-based
approaches.

On the one hand, in crown-based methods (e.g., [16] and
[17]), convex hulls are used to model crown shapes, and
branches are generated by the L-system or software such as
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PlantGL [18]. In practice, the calculated branches do not match
the branches of the real trees very well. Crown-based methods
are usually applied to reconstruct flourishing trees in which the
detailed branch information cannot be clearly discriminated.

On the other hand, skeleton-based approaches are very ef-
fective in describing the spatial distribution of tree branches,
which can be thought of as a skeletal structure. Vosselman [19]
and Gorte [20] rasterized the point cloud and used Dijkstra’s
algorithm (DA) [21] to obtain a skeleton from their 3-D rasters.
Bucksch [22] and Lindenbergh [23] segmented points into
octree cells and, by connecting local extractions in adjacent
cells, produced a curved skeleton. Their method can process a
large number of point clouds in linear time complexity and can
produce quite stable reconstructions which are not greatly influ-
enced by small changes in the object boundaries. However, the
obtained reconstructions are sensitive to varying point densities
and undersampling, and lack fine details. Because their methods
are based on the raster data transformed from point clouds
to extract tree skeletons, the accuracy of the obtained tree
skeletal structure depends on the partitioning resolution of the
raster. There are some skeleton-based methods that avoid this
raster resolution problem by obtaining the tree skeletal structure
directly from a point cloud. For example, Pfeifer et al. [24] uti-
lized a volumetric method for extracting skeletons from points
and built meshes for stems by using cylinders. Their method
aims at identifying the prominent structure of trees rather than
at reconstructing finely detailed models. Su et al. [25] used
a constrained Laplacian smoothing [26] to extract skeletons.
This method is not computationally efficient and cannot address
complex tree models. In another approach, Côté et al. [27]
first integrated DA [21] and level sets [28] to obtain skeletons
and then used the colonization algorithm [29] and a light trans-
mission model to reconstruct the fine branch structure superim-
posed on the skeletons. This type of tree modeling is relatively
insensitive to wind- and occlusion-induced artifacts in the TLS
point cloud. However, the technique requires labor-intensive
parameterization based only on the visual appearance of the
tree and is thus not suitable for an automatic interpretation of
TLS data. To overcome the weaknesses of [27], Côté et al.
[10] proposed an automatic procedure to assess the accuracy of
the generated tree architecture. This architectural-type model
was designed to provide a practical method to synthesize and
quantify the spatial distribution of tree components from the
TLS point cloud, thus resulting in a clearer description of the
3-D tree architecture. Although architectural tree models recon-
struct the fine branch structure to fit the biological parameters of
real trees, branch skeletons cannot be accurately reconstructed
by the DA and level sets alone. In [10] and [27], backscattered
intensity was used to distinguish branches and leaves, but the
backscattered intensity in the point clouds of our scanned trees
is not an obvious difference.

The input point cloud in the previously mentioned skeleton-
based methods was obtained from multistation scans. For large-
scale scenes, single or mobile scans (both of which scan trees in
only one direction) are more efficient than multistation scans.
Because laser beams are reflected from the nearest branch
surfaces along the direction of travel, the opposite side of the
branches and other branches behind them are often occluded.

Most trees that are scanned during winter or spring contain
few leaves, making more parts of the trees visible, although
occlusions are still severe in some types of trees. Using such
incomplete structure information to create accurate 3-D models
of trees is still a challenging research topic.

To model trees from TLS point clouds produced by a single
scan, Xu et al. [30] proposed a modeling approach that uses
general knowledge on tree structure to generate the tree meshes.
In this approach, the tree skeleton is first extracted, and small
twigs and leaves are then synthetically added to produce a
plausible support structure for the tree crown. Because this
method depends on prior knowledge about tree structure, it is
less effective at creating accurate tree models when addressing
a large variety of tree structure. This method therefore fails
to support the tree crown due to having a sparse point cloud
distribution. Livny et al. [31] applied a branch-structure graph,
which is defined as a spatially embedded and connected di-
rected acyclic graph, to represent tree skeletons. A series of
global optimizations [32] was adopted to reconstruct the major
skeletal branches; this approach avoids manually setting the
parameters for different types of trees. In this way, after edge
removal and fine geometry synthesis, a tree model was recon-
structed. This method is robust to noise, and the reconstructed
tree has finer details resolved than the approach proposed in
[30]. However, it is not sufficiently flexible to describe branch
stretching directions and cannot handle point clouds that have
large regions of missing data.

The aforementioned literature review shows that, although
previously known skeleton-based methods for tree modeling
can effectively describe approximate skeleton structure, they
cannot adequately extract tree skeletons from grossly incom-
plete point clouds. In an effort to fill this gap, a distance mini-
mum spanning tree (DMst) and a robust structure-aware global
optimization method, termed SAGO, are proposed to extract
tree skeletons from imperfect TLS data. The main contributions
of this paper can be summarized as follows.

1) In contrast to most tree-skeleton extraction approaches
(e.g., [27], [30], and [31]), which are not well adaptive
to the point cloud with varying point density, a DMst-
based novel algorithm that is adaptive to the varying point
density is proposed to extract tree skeletons from the
TLS point cloud. The DMst integrates the advantages
of the DA (being robust to noise and varying cloud
point densities) and the minimum spanning tree (MST;
preserving the local spatial structure of the point cloud).

2) Previous methods do not recover the regions of missing
data before they reconstruct the 3-D tree models. With-
out the recovery of the data in occluded regions, the
extraction of the tree skeleton is highly likely to fail. To
resolve this problem, the branch stretching direction of
each point in the TLS data is computed, which makes
the proposed optimization method structure-aware. Next,
SAGO is developed to place the points into appropriate
regions of missing data in such a way that missing data
are recovered. Various experimental evaluation results
have shown that the SAGO can handle the TLS point
cloud even with large regions of missing data.
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Fig. 1. Methodology for reconstructing 3-D tree models from the TLS point
cloud.

II. METHODOLOGY

This section presents an overview of the methodology that is
proposed for restructuring 3-D tree models from the TLS point
cloud. Fig. 1 illustrates this procedure. First, preprocessing is
conducted to generate a connected undirected graph from the
TLS point cloud. Second, the DMst is applied to extract the
approximate tree skeletons, and the branch stretching directions
are computed from these skeletons. Third, the SAGO is intro-
duced to recover regions of missing data. Through an iterative
process using these three steps, the true skeletons are refined,
and in this way, the geometry of the trees is finally created, and
the 3-D tree models are generated. The functionality of each
step will be briefly explained next.

1) Before tree models are reconstructed, the points on trees
are manually recognized by users from the input point
cloud. To conveniently extract tree skeletons during pre-
processing, these tree point clouds are further organized
into a connected undirected graph.

2) A DMst is developed to obtain the approximate tree skele-
ton from the previously constructed graph. The procedure
of constructing the DMst is introduced. Using the approx-
imate tree skeleton, the branch stretching directions are
calculated for implementing the SAGO.

3) The SAGO that recovers missing data is presented. This
process allows more accurate extractions of tree skeletons
from the incomplete point cloud. To obtain the refined
tree skeletons, the optimization and tree skeleton con-
struction processes are performed alternately.

4) To generate the 3-D mesh models for trees, the recon-
structed skeletons are smoothed, and then, the radii of the
branches are computed in such a way that the skeletons
are inflated to the 3-D tree models. Leaves are also
included if the scanned trees contain them.

A. Preprocessing

Before 3-D tree models are reconstructed, the tree point
cloud is identified by the user from the full TLS point cloud,
which contains trees as well as other objects, including build-
ings, roads, and pedestrians. If the point cloud contains more
than one tree, the number of trees and their base locations also
need to be specified. Next, we construct an undirected graph
G(V,E) to determine the connectivity of points among the
point cloud, where V is a set of vertices and E is a set of edges.
Each point corresponds to a vertex in G. For each point, we
identify its k nearest neighbors and connect the corresponding
vertices in G with edges that are associated with the Euclidean
distance between the two vertices. Due to limited scanning
resolution and occlusions from leaves and other branches, G is
usually not a connected graph [33], [34]. To obtain a connected
graph, the two nearest connected components of G are com-
bined into one by an edge that links their two nearest points.
The process ends when G becomes a connected undirected
graph.

B. DMst Construction

This section presents a new algorithm for the determination
of tree skeletons that is based on the graph G to adapt to
the point cloud with noise and varying point densities. The
DA has been typically applied in the past to construct tree
skeletons (e.g., see [10], [20], and [30]). It is a graph-based
search algorithm which solves the single-source shortest path
problem. It does so by producing a tree that minimizes the sum
of the edge weight from each vertex to the single-source vertex,
which is the root node. Because the directions of the shortest
paths computed by the DA visually coincide with the branch
growing directions, this approach gives a good approximation
of tree skeletons even if the point cloud is incomplete or noisy.
Unfortunately, because the DA cannot describe the spatial dis-
tribution of points in local regions, it often combines the level
set to extract the skeleton, which causes the reconstructed trees
to lack important details. To describe the spatial distribution of
points in local regions, the square of the Euclidean distance
between two points is taken as the weight of the edge that
connects the two points, and then, the DA is used to extract
the tree skeleton in [31]. Unfortunately, the fixed weights of
the edges prevent this algorithm from accurately handling data
that have a varying point density. In contrast, the MST is a
spanning tree in which the sum of the edge weights is no
larger than those of any other spanning tree. To the best of our
knowledge, no previous studies have used the MST to extract
tree skeletons. The reason could be that the MST is sensitive
to noise and often erroneously connects the points of neigh-
boring branches. However, the main advantage of the MST
is that it can preserve the local spatial structure of the point
cloud.

Motivated by the individual advantages of the trees produced
by the DA and the MST and by the similar algorithmic struc-
tures of the DA and Prim’s algorithm [35], which is used to
obtain the MST, we propose a novel spanning tree, which will
be referred to as DMst, to extract the tree skeleton from the TLS
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Fig. 2. Connectivity of nodes on the DMst.

point cloud. Essentially, the DMst is a compromise between the
DA and the MST since it has a smaller weight sum than the tree
produced by the DA, and the distance from each node to the
root node is shorter than that in the MST. When constructing
a DMst, we start with a root node that is located at the base
of the DMst as a single-source vertex, and we continuously
increase the size of the tree, one edge at a time. The process
stops when the DMst spans all of the vertices of a graph. Fig. 2
illustrates the connectivity of the nodes on a DMst. Suppose
that i is a node to be refreshed, j is currently selected as a tree
node, and k is a node that is already on the DMst. Pmst[i] is
the parent node of i on the MST, and here, Pmst[i] is j. Pdij [i]
is the parent node of i on a tree that is produced by the DA;
here, Pdij [i] is k. PDMst[i] is the parent node of i on the DMst,
−−−−−→
iPmst[i] is the direction from node i to Pmst[i], and

−−−−→
iPdij [i] is

the direction from node i to Pdij [i]. Table I presents the details
of the algorithm that is applied to construct a DMst. In step I,
Dmst[i] +Ddij [i] is taken as the condition for selecting i.
Step II shows the way to refresh a point in the MST. Step III
presents the process for refreshing a point in the tree con-
structed by the DA. As shown in Fig. 2, Pmst[i] and Pdij [i]
are different. To maintain the DMst with a small weight sum
and a short distance from each node on the DMst to the root
node, in step IV, we make PDMst[i] satisfy the condition that the
length sum of (i, PDMst[i]) and the length of i passing through
PDMst[i] to the root node is the smallest among those that i
connects with other nodes.

If the point cloud contains multiple trees, first, the DMst
is constructed, and then, an approach that is similar to the
approach presented in [31] is used to divide the data into
individual trees.

Because all of the points are on the previously constructed
DMst, the DMst is a cluttered tree structure and does not clearly
show the main branches. Redundant nodes must therefore be
removed, as will be explained in Section II-B1. To adapt to the
different point densities, two extensions are added to the DMst
in Section II-B2.

1) Node Pruning: Because all of the points of the point
cloud are on the DMst, the DMst is cluttered. Some points
need to be pruned from the DMst to obtain an approximate
tree skeleton on which we can see branch connections more
clearly and compute the branch stretching directions efficiently.
Assume that the weight of node i is ci. For node i with no

TABLE I
ALGORITHM FOR CONSTRUCTING A DMst

child nodes, ci = 0.1 m. For a node i with children, ci can be
obtained as follows:

ci =
∑
j∈Ω

(cj + dij) (1)

where Ω is the set of the child nodes of i, j is a child node of i,
and dij is the Euclidean distance between i and j.

It is convenient to introduce a threshold δ, which allows the
removal of the children, as follows: If ci < δ, node i is removed;
otherwise, it is retained. Fig. 3 shows the details of the DMst as
it has been applied to a typical sample of a tree. All of the points
in Fig. 3(a) are on the DMst in Fig. 3(b), which occludes the
structure of the skeleton. The region in the red box in Fig. 3(b) is
enlarged in Fig. 3(d). After pruning the nodes, an approximate
skeleton is clearly displayed [Fig. 3(c)].

2) Adaptation to Varying Point Density: To address varying
point densities and different tree species, the following two
generalizations are introduced: 1) The weight of each edge in
the connected undirected graph is modified, and 2) a positive
parameter γ is added to the DMst.

For the first generalization, the weight of each edge in the
graph is dynamically changed. In general, a tree surface is
smooth, and the extensions of the branches are continuous.
Because a thin twig seldom turns suddenly into a thick twig
or vice versa, two basic properties are valid. The first property
is that the point density around two adjacent nodes is similar
because the local point density seldom varies. The second
property is that a branch can exist in regions that have high point
density. According to these two properties, on the one hand,
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Fig. 3. DMst of a tree. (a) Raw point cloud. (b) DMst from the raw point
cloud. (c) DMst after pruning nodes. (d) Details of the region in the red box
in (b).

nodes with high density are connected prior to nodes with low
point density. On the other hand, adjacent nodes with similar
point density are connected prior to those adjacent nodes that
have varying point density. In this situation, the branch con-
nections are not affected by complex thin twigs. To satisfy the
connections, the edge weight in the graph G(V,E) must be
changed accordingly. The weight eij of the edge between the
vertices i and j can be calculated as follows:

eij = dij × vi× vj × (vi/vj + vj/vi) (2)

where vi is the average distance between vertex i and its con-
nected vertices and vj is the average distance between vertex
j and its connected vertices. Because vi and vj indicate the
reciprocal of the point density at i and j, the larger their values
are, the lower the local densities at i and j will be. From (2),
it can be observed that the weight eij is small in the graph G
if the point cloud at vertices i and j has similar density. When
the DMst is constructed from the graph G(V,E), edges that
have small weights are added to the DMst prior to the edges
that have large weights. This procedure clearly satisfies the
aforementioned two properties.

To further address the point cloud with varying point density
and the adaptation to different tree species, the algorithm
presented in Table I is made adaptive. This goal is achieved
by introducing an adaptation parameter γ, which adjusts the
ratio between the MST and the tree constructed by the DA.
More specifically, in Table I, the term Dmst +Ddij should
be replaced by Dmst[i] + γ ×Ddij [i] to control the selected
nodes in step I. When the DMst is refreshed, γ × (Dmst[i]+
(Dmst[i]+Ddij [j])−Ddij [k])>(Ddij [i]−Ddij [k]+Ddij [i]−
Ddij [k]) is used in step IV instead of Dmst[i] + (Dmst[i] +
Ddij [j]) > Ddij [i]−Ddij [k]+Ddij [i]. If γ = 0, step IV-1

is omitted, and only step IV-2 is executed when only using
the MST. When γ tends toward infinity, step IV-1 is always
followed, while step IV-2 is omitted, which allows DMst to
be deduced by only using the DA. For any other values of
γ, steps IV-1 and IV-2 are executed, and the DMst is a tree
that is somewhere between the trees obtained by the MST and
the DA.

Fig. 4 shows the connectivity possibilities among nodes that
have different values of γ. Let us consider the case of γ = γc
as a reference scenario [see Fig. 4(a)]. When γc becomes large,
the angle ∠kij becomes small, as shown in Fig. 4(b). Otherwise,
the angle ∠kij is large, as in Fig. 4(c). As this procedure clearly
shows, the DMst constructs a tree whose branches extend in
different directions depending on the way that γ changes.

The previously described method has been used to ob-
tain approximate tree skeletons from the TLS point cloud. A
typical set of performance evaluation results is illustrated in
Fig. 5 for the approximate skeletons produced by the MST,
the DMst with various values of γ, and the DA. Differences
in the extracted branches are shown in the red rectangle. It
is noted that the approximate skeleton produced by the MST
preserves more local spatial features of the branches, but it
introduces incorrect topologies [Fig. 5(b)]. The approximate
skeleton produced by the DA gives a natural view of the tree
but lacks precise local structure [Fig. 5(f)]. The approximate
skeletons produced by the DMst with different γ are shown
in Fig. 5(c)–(e). The smaller γ is, the more similar the ap-
proximate skeleton produced by the DMst is to that produced
by the MST. For larger γ, the DMst skeleton is more similar
to that produced by the DA. The approximate tree skeleton
obtained by employing the DMst, as shown in Fig. 5(d), is
most visually similar to the real tree because it has accurate
orientations and local spatial structure. The DMst considers
the distance from each point to the root node along the DMst.
This arrangement can guarantee that the generated twigs ex-
tend toward the outside, which is helpful for the recovery of
missing data.

C. Skeleton Refinement and Dominant Direction Extraction

As shown in Fig. 3(d), the direction that a branch stretches
can differ from the directions of the individual edges contained
within it. We define the dominant direction as the branch
stretching direction. The dominant directions can guide the
points along the branch stretching directions. Although the
pruned tree is an approximate skeleton, there are still many
edges that do not represent actual branches. Therefore, to
determine the dominant directions, the pruned tree is refined to
ensure that the edges on the skeleton represent actual branches.
Fig. 6 illustrates the process of obtaining the dominant direc-
tions of the points on an interval of a resampled branch by using
the pruned DMst in Fig. 5(d) as an example.

To obtain the refined tree skeleton, the pruned tree is resam-
pled. First, the root node, the end nodes without children, and
the intersection nodes, which are the nodes that have more than
two children, are obtained and labeled on the pruned tree as
sampling nodes. Next, starting from these sampling nodes, the
parent nodes are searched for among the sampling nodes in the
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Fig. 4. Possible triangles in the DMst. (a) At γ = γc. (b) At γ > γc. (c) At γ < γc.

Fig. 5. Tree skeletons generated by the MST and DMst and the tree produced
by the DA. (a) Raw point cloud. (b) Pruned MST. (c) Pruned DMst with
γ = 0.5. (d) Pruned DMst with γ = 1. (e) Pruned DMst with γ = 1.5.
(f) Pruned tree obtained by the DA.

tree over a regular distance interval s until all of the sampling
nodes have been labeled. Finally, these sampling nodes are
connected according to the pruned tree to become a resampled
tree [Fig. 6(a)]. The tree skeletal structure after resampling can
be inflated into a tree model. A small cut of branches is usually
thought of as a generalized cylinder. Because the point cloud
is subject to noise, it is difficult to determine the radius of the
cylinder. However, the point cloud near the base of a tree is
relatively dense and less noisy, which means that the radius
of the base of the tree can be relatively accurately estimated
by cylinder fitting. To estimate the radii of other branches, an
approach that is similar to that of [30] is followed. In particular,
if node i has only one child node, then the radius rj of the child
node is computed as

rj = ri

(
lj
li

)1.5

(3)

where ri is the radius of node i, lj is the total branch length sup-
ported by the child, and li is the total branch length supported
by the parent.

Fig. 6. Process for obtaining the dominant directions. (a) Tree skeletal
structure after resampling. (b) Refined tree skeletal structure. (c) Identifying
an incorrect branch (black points). (d) Deleting the intersection point of the
incorrect branch. (e) Dominant directions of all points shown except node j.
The black nodes and edges are deleted. The red nodes and edges are retained.
The pink nodes are the intersection nodes. The green points are the children of i
between i and j on the DMst. The yellow nodes are located on the refined tree.
The yellow line from i to j represents the dominant direction. The green lines
are the edges of the DMst.

If node i has more than one child, the radius rj of each child
node can be obtained by

rj = ri

⎛
⎜⎝ lj∑

j∈Ω
lj

⎞
⎟⎠

1
2.49

. (4)

After the radii of the branches are obtained, the general-
ized cylinder tree is generated. Branches whose intersection
volume exceeds 50% of the volume of their branch cylinders
are removed. On the resampled tree, if an original intersection
node [shown as the pink node in Fig. 6(c) and (d)] is not an
intersection node after these branch points are removed, it is a
spurious intersection node. We search for the child and parent of
the intersection node and compute the distances from these two
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Fig. 7. Example of an intersection region with missing data. (a) Complete
branches. (b) Point cloud with missing data in the region of intersection.

nodes to the intersection node. Once either of the two distances
is smaller than 0.75 s (s is the distance interval introduced
in Section II-C), the intersection node is removed, and the
child nodes on the resampled tree are connected to the parent
node, as shown in Fig. 6(d). Otherwise, the intersection node is
preserved. When all of the nodes on the spurious branches and
the spurious intersection nodes are removed, the refined tree
skeleton is obtained [see Fig. 6(b)]. The red box highlights the
major difference between Fig. 6(a) and (b). If the radii of the
branches near the base of a tree are large, spurious branches
there would be occluded by the thick branches, and only the
main branches would be maintained. On the other hand, the
branches on the crown are thin, which causes few intersections
to occur; as a result, most of those branches are maintained.
Then, the dominant directions can be extracted from the refined
tree skeleton. Fig. 6(e) shows two neighboring nodes i and j
of the refined tree skeleton, where i is closer to the tree root.
Taking the direction from i to j as the dominant direction of
i, this direction is also applied as the dominant direction of
each child [green points in Fig. 6(e)] of i between i and j on
the DMst. Because the end node does not have child nodes on
the refined tree skeleton, its dominant direction and that of its
children on the DMst are defined as the dominant direction of
its parent.

D. SAGO

This section presents the SAGO, which improves the quality
of the point cloud by recovering regions of missing data.
Through optimization, the points are distributed more uni-
formly, and regions of missing data are filled. The skeletal
structure obtained from the optimized point cloud is much
better than that from the raw point cloud.

Fig. 7 illustrates a crossed region of a tree where three
branches intersect with each other. If the radii of the cylinders
are large, then the corresponding branches are thick; if the radii
of the cylinders are small, then the corresponding branches are
thin. This typically occurring example illustrates the necessity
for our structure-aware optimization to improve the connectiv-
ity of the skeleton. When the tree point cloud is perfect, i.e.,
no branches are occluded, the skeleton can be easily extracted
[see Fig. 7(a)]. However, with missing data in the regions of
branch intersections, the correct connectivity of the skeleton in
these regions is difficult to obtain. The black lines represent the
possible skeletons. Missing data often cause incorrect skeleton

connections because branches b1 and b2 are close to each other,
and they are easily connected together [see Fig. 7(b)]. However,
b2 is thin, and b1 is thick; thus, b2 cannot be the parent branch
of b1. Therefore, it is necessary to recover missing data to fill in
the correct skeleton. This goal will be achieved by the SAGO.

The main motivation behind the SAGO is based on the fol-
lowing observations. The point cloud of a tree can be regarded
as discretizations of the stem and branch surfaces. The tree
surface is usually smooth, which implies that the point density
varies little on a continuous branch surface. If a branch is partly
occluded, data are missing. We can easily extract the whole
branch skeleton by extending the branch and the branches
around it up to a certain distance based on their radii and then
connecting the branch to coincide with its most probable shape.
If the radius is large at the end of a branch (i.e., the local point
density is high), this arrangement typically indicates that part
of this branch is blocked. Therefore, the end of the branch
is extended by moving the points at the end of the branch
along growing direction of the branch, which is the dominant
direction.

It is convenient for our analysis to assume that all of the
points are analogous to particles that carry the same elec-
tric charge, which repel each other, and the branch-growing
movement is analogously driven by the force between these
point charges. We define Fr as the electric force, which is
a repulsive force that is exerted on a node by its connecting
nodes. Points that experience Fr will continue to move until
they meet other balancing forces. Therefore, we introduce a
constraint force Fs to prevent points from moving significantly
away from their original positions. The direction of Fs points
toward the original position from the new positions of the
points and scales, with the distance moved. Its operation can be
compared with the force from a spring; the farther away that a
point is from its original position, the larger Fs becomes. Next,
Section II-D1 introduces the force-balance-based optimization
algorithm for recovering regions of missing data. Section II-D2
presents case studies of regions of missing points that can be
effectively recovered by this algorithm.

1) Optimization of the Incomplete Point Cloud: The repul-
sive force Fr can also be considered to be equivalent to an
electric force between two particles that carry electric charges.
Therefore, the electric charge qi is defined first; it is equal to the
local point density at point i as follows:

qi ∝
1

vi
(5)

where vi is the average distance from all of the nodes in Ω to
node i.

Because the distribution of the points is highly related to the
structure of the branches, we further make Fr structure-aware
by projecting it onto the dominant directions Oi of the points,
i.e.,

Fr(P) ∝
∑
j∈Ω

qiqj
‖Pi −Pj‖2

(Pi −Pj) (6)

Fr(P) ∝
∑
j∈Ω

OT
i

qiqj
‖Pi −Pj‖2

(Pi −Pj)Oi (7)
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where Pi and Pj are the coordinates of points i and j after the
optimization, P = {P1,P2, . . . , }, qi and qj are the analogous
electric charges of i and j, and i �= j. Ω is the set of all nodes
connecting with i, Oi is the dominant direction of i, and T is
the transpose operator.

The constraint force Fs is constructed similar to Hooke’s law
for a spring. More specifically, the force Fs between a new
position and its original position is proportional to the distance
from its original position. Mathematically, this relationship can
be expressed as

Fs(i) ∝ Ki(Ui −Pi) (8)

where Ui is the coordinate of i before the optimization. The
damping factor Ki of i is defined as

Ki ∝

(∑
j∈Ω

qj

)
qi

v2m
× Log2(ci + 1)i (9)

vm =
1

m

i=m∑
i=1

vi (10)

where m is the number of nodes on the DMst.
It is expected that the nodes near the base of the DMst do

not move far, while the nodes near the end nodes in the crown
should be moved long distances because they could be near to
regions that have a sparse point cloud or missing data. Thus,
the values of Ki should be larger near the base of the DMst
and smaller near the end nodes. The trends of coefficient ci,
which is defined in Section II-B2, are also similar to the trends
of Ki. The growth rate between ci of node i and that of its
children increases approximately exponentially. This growth in
ci would cause Ki to change drastically, which would make the
points move too far and become too diffuse. To avoid drastic
changes in Ki, we use log2(ci + 1) in (9) instead of using
only ci.

When Fs = Fr, the points will not move. In an optimal way,
the movement/positioning of the points in such a way that force
balance is achieved, i.e., Fr = Fs, the optimization function is

P = argmin
P

∑
‖Fr(P) + λFs(P)‖2 (11)

where λ > 0 is a parameter that is used to balance the two
forces. Equation (11) is a nonlinear optimization equation that
can be solved iteratively by Newton’s method.

To indicate the effectiveness of our methodology, we have
tested it on the raw point cloud. After the raw point cloud
[Fig. 8(a)] is optimized, the data are recovered [Fig. 8(b)].
However, the data in the blue box are not recovered in Fig. 8(c),
and the end points are more diffuse than those in Fig. 8(b).

Although the data in regions of missing data can be recov-
ered, the distribution of the points after optimization is diffuse
and noisy in those regions, which prevents the skeleton from
retaining the branching structure. To maintain the branching
structure as much as possible, we attempt to preserve the
tree skeleton while processing the raw point cloud. Because
the DMst is adaptive to the point density, if the raw point

Fig. 8. Comparison of the point cloud before/after optimization. (a) Raw point
cloud. (b) Point cloud after optimization. (c) Result after optimization in which
ci instead of log2(ci + 1) was applied in calculating Ki (9).

Fig. 9. Effects of different procedures for handling the point cloud. (a) Points
generated by adding the optimized points to the original points. (b) Point cloud
of (a) after deleting points. (c) Refined skeleton obtained from (b). (d) Refined
skeleton obtained from the raw point cloud.

cloud overlaps with the optimized point cloud to form a new
point cloud as Γ0 [Fig. 9(a)] and a new graph and DMst
are regenerated on Γ0, then the regions with complete data
will have a higher point density. Because the points in these
regions have the priority to be connected on the skeleton,
the branching structure is retained. Furthermore, because the
regions of missing data are filled by the optimized points, the
tree skeleton in these regions is reconstructed more accurately.
To show the result of avoiding noise on Γ0, the optimized points
that are also end points are removed iteratively until there is
none left. This arrangement is shown in Fig. 9(b), where most of
the diffuse points are removed and missing data are recovered.
The branch structure in Fig. 9(c) in the regions of missing data
is reconstructed more precisely than the branch structure in
Fig. 9(d), which was reconstructed from the raw point cloud.

After the tree structure is reobtained, the dominant direction
of each point is also recomputed to replace the previous one.
The new dominant directions more accurately coincide with the
corresponding branch stretching directions. To further improve
the accuracy, the same optimization procedure is repeated on
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Fig. 10. Three-dimensional tree model is reconstructed in three iterations.
(a) First iteration. (b) Second iteration. (c) Third iteration. (d) Photograph of
the tree.

Fig. 11. Recovery of missing data in a part of a branch. (a) Part of the branch
is missing, but the branch still connects. (b) Result after optimization.

the optimized point cloud Γ0 by using the new dominant
directions. The reoptimized point cloud Γ1 is then overlain
on Γ0 to form the new point cloud Γ2, which results in a
more refined tree skeleton. This process is repeated until the
difference between Ln, the sum of all of the edge lengths of
the skeleton, and Ln−1, the sum in the previous iteration, is
less than 5% of Ln or Ln−1. Experiments have shown that this
process converges quickly, i.e., in less than four iterations. In
summary, the DMst considers the local point density, and the
optimization process recovers missing data to make the point
cloud uniform, thus achieving precise tree skeletons from the
imperfect raw original point cloud. Fig. 10 shows the visual
results of this iterative optimization. Note that the skeleton in
Fig. 10(c) has more details than the ones in Fig. 10(a) and (b).
From the graphs illustrated in the red box, the third iteration
is the most similar to the tree structure that is shown in the
photograph [Fig. 10(d)].

2) Recovery of Missing Data: We will use three generic
but complementary cases, which will illustrate, in a general
manner, how the optimization method can be used to effectively
recover the incomplete point cloud. As will become apparent
and can be observed from Figs. 11–13, these three cases or
their combinations can represent all of the typical spatial dis-
tributions of missing data. In particular, Fig. 11 illustrates the
case in which the points of a part of a branch are missing,
whereas Fig. 12 describes cases of an actual branch end and
a spurious branch end. Finally, Fig. 13 shows the case of
compound missing data from which it is especially difficult to
reconstruct a true skeleton. For all three cases, it is assumed that
points at thick branches are dense and points at thin branches
are sparse. As shown in Figs. 11–13, the earth-tone-colored

Fig. 12. Illustration of recovering missing data at a true branch end at spurious
branch ends. (a) True end of a branch. (b) Result after the optimization of (a).
(c) Spurious branch ends. (d) Result after the optimization of (d).

Fig. 13. Illustration of recovering missing data. (a) Compound missing data
case. (b) Detail of the blue box in (a). (c) Result after optimization.

regions denote the raw point cloud, and the cross-hatched earth-
tone-colored regions indicate the optimized points. Next, the
detailed procedure for recovering the missing data for these
three cases will be presented.

In Fig. 11(a), suppose that the point density at node if is
higher than that at node ib. The electric charge qif of node if is
larger than the electric charge qib of node ib. The angle between
the dominant direction and the direction between nodes if and
i is smaller than the angle between the dominant direction and
the direction between nodes ib and i. Furthermore, because
Fr(i, if ) > Fr(i, ib), i is forced to move to the right until the
constraint force is equal to the repulsive force, while for the
same reason, node j will move to the left. For node k, because
Fr(i, if ) ≈ Fr(i, ib), i will move only slightly to the right or
left until these two forces balance at or near k. Through this
process, the region of missing data can be recovered, as shown
in Fig. 11(b).

Considering node i without any children in Fig. 12(a), then,
because the repulsive force created by the parent of node i on
the DMst is balanced by the constraint force, i moves along
its dominant direction. Because it is a true end of a branch,
the branch thins slowly along this direction, and thus, the
point density here also changes slowly. Therefore, as shown in
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Fig. 12(b), Fr(i, if ) is small, which means that the points move
only a short distance along their dominant directions to keep the
end nodes from diffusing. Fig. 12(c) illustrates the point cloud
of two spurious branch ends. Occlusions divide the branch
into two separated branches, A and B. At the ends of the two
spurious branches, which are not true branch ends, the radius of
the branch changes significantly, which implies that the point
density here also changes significantly. Therefore, Fr(i, if )
is large, and thus, the points move far distances along their
dominant directions. The dominant direction of the points on
branch A points to the right, and the dominant direction of the
points on branch B moves to the left. This arrangement causes
node i to move to the right and j to move to the left, which fills
the region of missing data, as also shown in Fig. 12(d).

In Fig. 13(a), black lines represent the edges of an incor-
rect DMst. Subbranches B and C are two parts of the same
branch, which are separated by the region of missing data that
is shown in the red box. In the blue box, A is very close
to B. The simultaneous occurrence of these two situations
causes the DMst to be constructed incorrectly. The process
of reconstructing the missing data in the red box is the same
as previously explained [see Fig. 12(c)]. Fig. 13(b) shows an
enlargement in the blue box. For node i, the electric charge qif
of its parent on the DMst is smaller than the electric charge qib
of its child; thus, Fr(i, if ) > Fr(i, ib), which causes i to move
in the direction that is opposite to the dominant direction of A.
For the same reason, all of the points around i also move in that
direction. The final outcome of this optimization is illustrated
in Fig. 13(c), where it avoids the wrong connections.

E. Construction of Tree Models

This section will present the approach used to reconstruct
3-D trees. The main procedure consists of the following steps.
First, branches are extended to obtain accuracy lengths. Second,
the skeleton is smoothed by a Laplace function. Third, the
radii of the branches are estimated, and if needed, leaves are
added.

1) Branch Extension: As mentioned in Section II-B2, some
points are deleted during the point-pruning process, which
affects the branch length. To retain the actual branch length,
some of the original points that were pruned are now remapped
onto the trees by using the following procedure. First, we find
an end node on the refined skeleton and search for its child node
by using the maximum weight on the DMst as a current node. If
the distance along the tree skeleton from the current node to the
end node is larger than the distance interval s, then this node
is added to the tree skeleton as a new end node. Otherwise,
its maximum weighted child node is taken as a new current
node. This process continues until a node without children is
found, which is then added to the tree skeleton. The refined tree
skeleton is updated after all of the end nodes on the refined tree
skeleton have been extended through this process.

2) Skeleton Smoothing: The branches on the refined tree
skeleton have a winding shape because they are obtained from
the point cloud that shows only one side of the scanned tree
surface. Although the refined skeleton keeps the connections of
the tree, it does not present the natural stretching shapes of the

branches well. To make the refined tree skeleton smoother, the
Laplace function [36] is applied to the points of the skeleton as
follows:

[
WLL

WH

]
V′ =

[
0

WHV

]
(12)

where WL and WH are the diagonal matrices that balance the
divergent and attractive forces, respectively. The ith diagonal
element of WL is denoted WL,i, and similarly, the ith diagonal
element of WH is denoted WH,i. In (12), V′ is the optimized
point set, V is the original point set, and L is the following
n× n Laplace operator:

Lij =

{
ωij = 1 if (i, j) ∈ E∑k

(i,k)∈E −ωik if i = j
0 otherwise

(13)

where E is the edge set of the skeleton and i, j, and k are the
nodes of the skeleton.

The diagonal elements of WL are set to unity in such a
way that every node will have the same convergent ability. The
values of the diagonal elements of WH are selected as follows.
If i is not an end node, then

WH,i =
∑
j∈Ω

cos θkij + 1 (14)

where k is the parent of i, j is a child node of i, and θkij is ∠kij.
If i is an end node or an intersection node, WH,i is assigned a
relatively large value. In this way, the intersection nodes and
the end nodes are maintained in such a way that the branches
between the intersection nodes are smoothed.

3) Radii Estimation: The radii of the tree branches are then
estimated by employing a cylinder-fitting procedure that accu-
rately determines the radii. This method fits a cylinder function
by using the nodes of the DMst that were relocated within two
adjacent nodes on the refined tree skeleton. It is noted that, if
the available points are not distributed on a cylindrical surface,
then this approach will not provide accurate radius estimates.
Additionally, if there are not enough points, the radii cannot
be estimated at all. In addressing this case, the radii of the
branches are also independently estimated by the allometric
model introduced in Section II-C. If the radius of a branch
on the refined tree can be calculated by the cylinder-fitting
approach, then the size of this radius is compared with the size
calculated by the allometric model. When the difference in the
two estimated radii is smaller than 20% of the larger radius,
the radius computed by the cylinder function is considered
accurate, and the corresponding points are defined to be the
true width points. Then, these values of the radii are taken as
the regularization term, and the allometric model is used as the
constraint. They are integrated by the following optimization:

r = argmin
r

∑
i,j∈tree,
i�∈intersect point

∥∥∥∥∥rj −
(
lj
li

)1.5

ri

∥∥∥∥∥
2
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+
∑

i,j∈tree,
i∈intersect point

∥∥∥∥∥∥∥∥
rj −

⎛
⎜⎝ lj∑

j

lj

⎞
⎟⎠

1

2.49

ri

∥∥∥∥∥∥∥∥

2

+
∑

i∈tree,
i∈true width point

‖ri −Ri‖2 (15)

where i and j are the nodes of the skeleton, j is the child of
i, li and lj are the total branch lengths supported by i and j,
respectively, Ri is the fitting radius of i, ri is the final radius of
i, rj is the final radius of j, and r = {r1, r2, . . .}.

4) Three-Dimensional Tree Reconstruction: Once the radii
of trunks and branches are calculated, the skeleton can be
inflated to a 3-D tree model that does not contain any leaves. For
trees with leaves, it is quite common to assume that their leaves
are more likely to grow at the places where the radii of the
branches are relatively small and the point cloud is clustered. To
identify the positions of the tree leaves, the label gi = qi/ri is
introduced at each point. Then, the labels of all of the points are
sorted in descending order, and leaves are added synthetically
to nodes whose gi exceeds a certain threshold, which controls
the number of leaves to be added. After the leaves are added,
the full 3-D tree models are reconstructed.

III. PERFORMANCE EVALUATION RESULTS

To validate the performance of our framework, we have
tested our method on a variety of tree point clouds as follows:
1) the tree point clouds with small regions of missing data and
2) the tree point clouds with large regions of missing data.

A. Experimental Data

The used point clouds have been acquired by RIEGL LMS-
Z360 and RIEGL LMS-Z620 scanners. Photographs of the
scenes scanned by the RIEGL LMS-Z620 scanner have been
taken by a Nikon D300 camera. The horizontal angle spacing
and vertical angle spacing of the RIEGL LMS-Z360 scanner
are both 0.12◦. The horizontal angle spacing and vertical angle
spacing of the RIEGL LMS-Z620 scanner are both 0.057◦. The
point clouds of the scenes were acquired by a single scan. The
distances from the scanned trees to the devices varied among
the scans. Because all of the trees were scanned during the early
spring and winter seasons, they contained relatively few leaves
that consequently did not completely occlude the branches
and twigs. Table II presents the data that are most important
and relevant to our study, the data on scanners, the data on
numbers and types of trees used, the data for the used point
cloud, and the time required for tree reconstruction as well as
the corresponding figures where our experimental performance
evaluation results are illustrated. All of the experiments that
were conducted within the framework of this study have been
performed by using a computer with an Intel core2 Q6600
2.4-GHz processor equipped with a 3.5-GB RAM.

TABLE II
INFORMATION ON SCANNERS, TREES, POINT CLOUDS,

AND TIME OF TREE RECONSTRUCTIONS

Fig. 14. Reconstruction of a 3-D leafless tree. (a) Tree photograph. (b) Raw
point cloud. (c) Reconstructed 3-D tree model. (d) Tree skeleton reconstructed
by the method of [31]. (e) Tree skeleton obtained by our method. (f) Details of
the blue box in (d) and the red box in (e).

B. Qualitative Evaluation

To qualitatively evaluate the proposed method, we compare
it with the approach presented in [31], which is the most
similar approach available in the open technical literature. It is
noted that the method of [31] aims to automatically construct
geometric skeletons of scanned trees with few leaves; it is
robust to noise and can handle small regions of missing data.
However, it is not flexible enough to describe branch stretching
directions, and it fails to handle the point cloud when there are
large regions of missing data.

Fig. 14 illustrates the reconstruction of a 3-D tree model of
a leafless tree. Some parts of the point cloud [Fig. 14(b)] are
missing due to occlusions. The tree model in Fig. 14(c) that is
reconstructed by our approach is similar to the tree photograph
in Fig. 14(a). This finding demonstrates that our approach can
model this tree reasonably well from the point cloud, e.g.,
clearly the intersections of the branches are described well. The
tree skeleton extracted by [31] [Fig. 14(d)] is similar to ours
[Fig. 14(e)]. However, as the details in Fig. 14(f), the method of
[31] introduces a few unreasonable branches in Fig. 14(d).

The proposed method has been tested for modeling trees that
have leaves. Fig. 15 shows the data and reconstruction results
for a magnolia tree. Compared with the original photograph
[Fig. 15(a)], the magnolia tree shown in Fig. 15(c) is accurately
modeled from the point cloud shown in Fig. 15(b). The leaves
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Fig. 15. Reconstruction of a 3-D tree with leaves. (a) Tree photograph.
(b) Raw point cloud. (c) Reconstructed 3-D tree model. (d) Tree skeleton
extracted by the method of [31]. (e) Tree skeleton extracted by our method.

Fig. 16. Reconstructed 3-D tree models that use, from left to right, 100%,
70%, 50%, and 30% of the raw point cloud.

do not affect the extraction of the tree skeleton. It is noted that,
in this case, the tree skeletons extracted by [31] and our method
(see Fig. 15(d) and (e), respectively) are very similar.

To evaluate the robustness of our method to varying point
densities, we have randomly removed a subset of points from
the point cloud that is shown in Fig. 15(b). In Fig. 16, the 3-D
tree models without leaves have been reconstructed by using
100%, 70%, 50%, and 30% of the raw point cloud. The main
structure of the four resultant trees is similar, and the high-level
structure is preserved despite the significant reduction in the
size of the point density. Although, in general, the removal of a
large number of points can reduce the connectivity, our method
is quite robust because only a few tree branches (highlighted by
the red boxes) are different. It is noted that most of the branches
in all four trees maintain good connectivity with other branches.

Another type of tree, namely, the locust tree, which has thin
but dense branches, has also been investigated. The original
data, which include the original photograph [see Fig. 17(a)] and
raw data [see Fig. 17(b)] as well as the various performance
evaluation results, are shown in Fig. 17. Reconstructing this
type of tree is difficult because of the noisiness and ambiguity of
the captured point cloud in the crown [Fig. 17(b)]. In Fig. 17(d),
the twig structure is retained very well. Some man-made objects
(e.g., the objects that support the tree in Figs. 14 and 17)
connect with the tree branches, but they do not interfere with
the obtained tree modeling results. For comparison purposes,
the method of [31] was also employed to generate the tree
skeleton shown in Fig. 17(c), where a skeleton that is similar
to the one obtained by our method can be found. We have
conducted a second experiment to investigate the effects of the
adjustable edge weight (see Section II-B2 for details) on the
3-D model. The tree model in Fig. 17(f) was extracted without
using an adjustable edge weight. It makes a few incorrect
connections compared to the tree model in Fig. 17(e), which

Fig. 17. Locust tree with thin and dense twigs. (a) Tree photograph. (b) Raw
point cloud. (c) Tree skeleton extracted by the method of [31]. (d) Tree skeleton
extracted by our method. (e) Reconstructed 3-D tree model. (f) Reconstructed
3-D tree model without considering the local point density.

adopts adjustable edge weights. The red box highlights the
locations of the misconnections. This experiment has shown
that, if the Euclidean distance is taken as the edge weight, then
the branch connectivity is affected by the complex thin twigs.
As can be observed from the red box of Fig. 17(f), although the
thin twigs appear to be connected to the branches, in fact, they
are not actually connected.

Up until now, the performance evaluation results presented
in Figs. 14, 15, and 17 indicate that our method can produce
accurate tree skeletons from a point cloud that has small regions
of missing data. Furthermore, with the next set of results, which
will be presented in Figs. 18 and 19, the ability of our method
to address large regions of missing data is further validated.

The paulownia tree, the point cloud of which is shown in
Fig. 18(b), has large gaps at its base and crown due to occlusion
caused by trees in front of it [see Fig. 18(a)]. Nevertheless,
as can be observed by comparing the results presented in
Fig. 18(c) and (d), our method can accurately reconstruct the
complete tree structure despite the large regions of missing data.
Moreover, some branches in the tree skeleton obtained by our
method in Fig. 18(f) are shown more clearly than the ones in
the tree skeleton [Fig. 18(e)] obtained by the method in [31], as
shown in the red box.
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Fig. 18. Modeling a tree from an incomplete point cloud. (a) Tree photograph,
with the tree to be modeled in the background, indicated by the red arrow.
(b) Raw point cloud. (c) Tree photograph taken from a closer perspective.
(d) Reconstructed 3-D tree model. (e) Tree skeleton obtained by the method
in [31]. (f) Tree skeleton obtained by our method.

The main reason why the method in [31] fails to compensate
for severe occlusions is that its optimization and iteration
process only pushes the points to shrink toward the current
skeleton and forces the tree branches to stretch toward their
end points. Thus, if the skeleton is extracted incorrectly in the
first place, unreasonable branch connections could exist in the
regions where there are missing data.

To further investigate the performance of our method in
handling incomplete point clouds, we artificially removed some
points from the complete input point cloud, as shown in
Fig. 19(a). It is underlined that the removed points are in
the region at an elevation of 1.3–1.8 m and are part of some
important branch intersections [see Fig. 19(b)]. Fig. 19(c)
illustrates that the region where the points are removed is
reamended. Compared to the 3-D tree model that is derived
from the complete point cloud and is shown in Fig. 19(d), the
main branch connections are retained in Fig. 19(e), with the
exception that some small twigs are missing because the points
that make up those twigs have been completely removed.

C. Quantitative Evaluation

In an effort to quantitatively evaluate the reconstructed mod-
els, an approach similar to that of [27] has been employed.
The 3-D tree in Fig. 19(d), which is reconstructed from the
complete point cloud, is taken as the reference tree model
(denoted Ref-T). The tree that is reconstructed at each iteration
by using the point cloud in Fig. 19(b) is denoted Des-T, and
it will be compared to Ref-T. The sampled point clouds of
Des-T and Ref-T are obtained in the same way as in [27]. The
sampled point clouds of the tree models are discretized in a 3-D
volume whose voxels are of a 0.2-m side length. Each Des-T is
compared with Ref-T by computing the normalized difference

Fig. 19. Tree model that was reconstructed from a point cloud in which some
of the points are intentionally removed. (a) Complete point cloud. (b) Point
cloud with elevations between 1.3 and 1.8 m intentionally removed. (c) Point
cloud after optimization. (d) Three-dimensional tree reconstructed from (a).
(e) Three-dimensional tree reconstructed from (b).

of the number of points in each voxel. The distribution of the
normalized difference in the return numbers per voxel, the mean
normalized differences, and the standard deviations between
Ref-T and each iteration of Des-T are shown in Fig. 20(a)–(c).
For all iterations, the mean values are all below zero (−0.0043,
−0.0058), which shows that the wood areas of Des-T are
smaller than those of Ref-T. This finding arises because the
completely occluded branches cannot be reconstructed. As
the dominant directions converge to the branch stretching di-
rections after multiple iterations, the mean value approaches
zero, which shows that the reconstructed model becomes more
precise after each iteration. The standard deviations that are
shown in Fig. 20(a)–(c) are less than 0.176. Clearly, because
both the mean values and standard deviations are small, most
of the voxels have very similar numbers of points in Ref-T and
Des-T, and the branches of Des-T are distributed similarly to
those of Ref-T. Therefore, also from a quantitative evaluation
point of view, our method is quite insensitive to the incomplete
point cloud and can reconstruct trees that have high quality.

It is also interesting and useful to compare the wood area,
which is related to the branch radii and branch distribution of
both Des-T and Ref-T. As can be observed from the related
experimental results presented in Fig. 20(d)–(f), there is only a
small difference between the vertical wood area profile of Ref-T
and that of Des-T, except in the regions that have missing
data. Therefore, our method also performs well at retaining the
branch radii and branch distribution even if some of the points
are removed. After each iteration, the difference in the wood
area between Ref-T and Des-T becomes smaller, i.e., Des-T
also becomes more precise with each iteration. The input point
cloud of some of the branches is completely missing due to the
point removal; thus, in the region between 1 and 2 m above the
ground, it is impossible to reconstruct these branches to make
the wood area of Des-T similar to that of Ref-T.
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Fig. 20. Distribution of the normalized difference of the points and wood area of each iteration. (a)–(c) Normalized difference of points of the first, second, and
third iterations, respectively. (d)–(f) Wood area of the first, second, and third iterations, respectively.

To further validate the accuracy of the radii of our recon-
structed trees, a numerical validation is also performed. By
taking field measurements, we have obtained the situ data of
the diameter at breast height (DBH) of 22 trees. For each tree,
the points in the region at 1.25–1.35 m height are intentionally
removed because the DBH is the diameter measured at 1.3 m
above the ground. The DBH of the experimental data is esti-
mated by (15). As shown in Fig. 21, the red line is a diagonal
line that indicates an ideal reconstructed DBH with respect to
the measured DBH. The black line is the fitted line, which
indicates the relationship between our reconstructed DBH and
measured DBH. The fitting linear equation y = 0.8256x+
5.3839 of the points is close to the diagonal line. R2 = 0.9173,
which means that the measured DBHs are very close to the true

DBHs. Therefore, (15) can be used to accurately estimate the
DBH. However, the accuracy of the DBH estimation is affected
by the shapes of the trunks. Because the shape of a tree trunk is
seldom a perfect cylinder, the accuracy of the DBH estimation
depends on the shape of the surface that faces the scanner. If
a rough surface faces the scanner, the estimated DBH could
be smaller than the measured DBH. If a flat surface faces the
scanner, the estimated DBH could be larger.

IV. DISCUSSION AND CONCLUSION

This paper has introduced a novel method which accurately
and efficiently reconstructs 3-D tree models from the incom-
plete TLS point cloud. This method proposes an effective DMst
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Fig. 21. Comparison of the DBH of the field measurement and the DBH of
our reconstructed tree models.

algorithm to derive tree skeletons from which a tree with
all of its geometrical features can be generated. These tree
skeletons represent the stretching directions of branches well.
Such estimated stretching directions make our structure-aware
global optimization adaptive to the local structure of branches,
achieving a realistic reconstruction. Owing to the flexibility
of our method, we can process the TLS-captured point cloud
of trees of various complexity and structure. Extensive perfor-
mance evaluations indicate the robustness of our method with
numerous raw scans which represent different types of trees.
Compared with previous methods, our method is less sensitive
to data incompleteness and noise and can more easily model
trees that have large occluded regions while maintaining the
characteristics of the input point cloud.

Since the proposed method is essentially data-driven, no
virtual branches are added to the trees in order to enhance the
visual effects. Our method algorithmically repairs the branches
in regions of missing data by using only structural information
on the visible parts of those branches. Thus, only the skeletons
in areas where the branches and twigs are completely occluded
cannot be reconstructed.

Furthermore, in cases where branches intersect with each
other, they form a ring that cannot be expressed by the tree
structure. Therefore, the DMst fails to address this condition
well. In this case, a directed graph should be used to first
describe the ring structure to construct a skeleton so that the
intersecting branches can be distinguished better. To investigate
new tree models which can more accurately represent the real
trees, the angles of the tree branches should be included in such
more generic models. The angles of the branches depend on the
tree species and also on how these trees are managed, e.g., when
they are in public parks or in private areas. Of course, this will
depend also on the actual tree species. A possible approach to
address this problem is to count the angles of the branches of
a reconstructed tree and subsequently obtain the distribution of
all of the angles to make the result coincide with that of the tree
species. In this way, each angle can be computed by the Markov
chain Monte Carlo method. An alternative approach should be
that the user intervenes to semimanually adjust these angles.
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